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Abstract

We model the progressive localisation of deformation which causes failure around thick-walled cylinders under
external radial pressure. The study is based on a second-gradient elastoplastic model developed to regularise the ill-
posedness caused by material strain-softening behaviour. The stress increment is related to both the strain increment
and its Laplacian. The gradient terms introduce an internal length scale to the material allowing robust modelling of its
post-peak behaviour. The numerical implementation is based on a C! finite element displacement formulation. Mesh
insensitivity in terms of load—displacement and failure mechanism is demonstrated. The internal length in the con-
stitutive equations enables modelling of the scale effect in thick-walled cylinders, according to which the load required
to induce failure appears to be much larger for small holes than for large holes. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Failure in solids and structures is often characterised by localisation of deformation in narrow zones of
intense shearing in the form of shear bands or shear interface layers. In advanced loading states the material
in these bands undergoes significant deformation and degradation of its mechanical properties, while the
rest of the material remains rather inert. Evidence from triaxial, biaxial and ring simple shear experiments
on geomaterials suggests that the localisation bands have a finite thickness (Miihlhaus and Vardoulakis,
1987).

Another characteristic of geomaterials is the dependence of their mechanical behaviour, stiffness and
strength, on the dimensions of the tested specimens. This dependence of the strength on the geometrical

*Corresponding author. Address: Schlumberger Cambridge Research, High Cross, Madingley Road, Cambridge CB3 OEL, UK.
Tel.: +44-1223-325-201; fax: +44-1223-327-019.
E-mail address: a.zervos@mechan.ntua.gr (A. Zervos).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(00)00337-1



5082 A. Zervos et al. | International Journal of Solids and Structures 38 (2001) 5081-5095

dimensions of a structure is called scale effect. In the structures community, the most well known example
of scale effect is the dependence of the tensile strength and fracture toughness of concrete and other het-
erogeneous materials, as measured in tensile tests, on the specimen dimensions (Mihashi et al., 1994; van
Vliet, 2000). A less well known problem of scale effect is the dependence of the hollow cylinder strength on
the hole size. The hollow cylinder test is the standard laboratory test used in petroleum, geotechnical and
mining engineering for assessing the stability of underground openings such as cavities and wellbores. Tests
performed on hollow cylinders with holes of different sizes showed that the load required to induce failure
appears to be much higher for small holes than for large holes (Papamichos and van den Hoek, 1995).
Cylinders of small internal diameter consistently break under higher external pressure than cylinders of
bigger internal diameter, resulting in failure pressures that may differ as much as 300%. Indeed, the most
dominant factor of strength in the range of wellbore perforation size (diameter less than 25 mm) is the scale
effect. Because of this strong scale effect, proper interpretation of experimental data, which are usually
obtained from small size holes, and correct extrapolation to field dimensions are open issues. We remark
that classical stress analysis (e.g. elastoplasticity) is unable to model the scale effect since the governing
equations can be written in a dimensionless form, predicting for all the geometrically similar cylinders the
same failure pressure. Therefore, in order to assess the ultimate stability of a hollow cylinder, a model must
(a) be based on localisation of deformation as the most robust failure criterion and (b) be capable to
address the scale effect.

Modelling of progressive localisation of deformation requires material softening to be included in the
constitutive equations i.e. the material is considered to lose strength with straining. However, this leads to
computational problems as the governing equations become ill-posed (Vardoulakis and Sulem, 1995). The
shear band thickness remains indeterminate and numerical computations in the post-bifurcation regime are
pathologically mesh dependent. Ill-posedness of the governing equations can be remedied by resorting to
higher order continuum theories. These theories take into account the material microstructure by intro-
ducing an extra parameter of material length. This parameter can be typically related to the mean grain size,
the microcrack length or some other characteristic length scale of the material. Higher order theories
presented in the literature are the Cosserat continuum theory (Mithlhaus and Vardoulakis, 1987; Papa-
nastasiou and Vardoulakis, 1992), the Mindlin theory (Mindlin, 1964), the non-local continuum (Pijaudier-
Cabot and Bazant, 1987; Tvergaard and Needleman, 1995), gradient plasticity (Aifantis, 1984a,b, 1987,
Vardoulakis and Aifantis, 1991; Vardoulakis et al., 1992; Vardoulakis and Frantziskonis, 1992; Fleck and
Hutchinson, 1993; Pamin, 1994; Ramaswamy and Aravas, 1998a,b) and, recently, gradient elastoplasticity
(Zervos et al., 2001). With higher-order theories the shear band thickness is no longer indeterminate since it
scales with the material length. This allows mesh-independent post-peak localisation computations, which
are able to capture the localised patterns. In addition, since the existence of the material length allows for
differentiating between “small” and “large” geometries, scale effect arises naturally in the material be-
haviour.

Other related work is the studies of bifurcation problems for the borehole and hollow cylinder test based
on classical plasticity and conventional perturbation methods for a rigid-plastic (Vardoulakis and Papa-
nastasiou, 1988) and elastoplastic (Papanastasiou and Durban, 1999) material. The solution of the problem
consisted in determining the lowest load which could cause warping at the surface of the hole. Mathe-
matically, bifurcation was possible for a threshold load at which the incremental equations of equilibrium
admit a non-unique solution. It was found that the most critical deformation mode of sinusoidal form is the
one of infinite wave number which corresponds to surface instabilities. Perturbation methods in conjunc-
tion with higher order theories were used in the case of a Cosserat continuum by Papanastasiou and
Vardoulakis (1989), and in the case of gradient plasticity by Vardoulakis et al. (1994). The existence of
material length in these theories leads to wave number selection, yielding a finite wave number for the critical
instability. Nevertheless, the perturbation approach predicts a lower bound of loading level at which lo-
calisation may initiate, without providing any information on how the localised pattern resulting in failure
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might evolve. A closer related study can be found in Papanastasiou and Vardoulakis (1992), where post-
bifurcation analysis with a Cosserat finite element model was carried out for modelling the progressive
localisation and scale effect. More recently, strain gradient plasticity was used by Shu and Fleck (1998) for
modelling the scale effect in microindentation of metals.

In this paper we will use a unified theory called gradient elastoplasticity, which is developed in order to
overcome complications in the numerical implementation of gradient plasticity. Gradient terms of the
strain are introduced in the evolution equations for state variables. As long as the deformation is relatively
homogeneous, like in the elastic and hardening regime, these higher order terms are negligible. In the
softening regime, however, where deformation becomes strongly inhomogeneous, the gradient terms
dominate and the well-posedness of the governing equations is preserved. Gradient elastoplasticity elimi-
nates the need that exists in gradient plasticity to discretise internal variables, like the plastic multiplier and
plastic strains, and to apply boundary conditions on them at the elastoplastic boundary. Only the dis-
placement field needs to be discretised, therefore the usual displacement formulation of the finite element
method is preserved. Because of the presence of gradient terms in the weak form of the boundary value
problem, strains must be continuous so C' finite element interpolation is needed.

In the following, we present in Section 2 the theory of gradient elastoplasticity and the expressions for
the state variables. The finite element formulation based on C' elements is briefly described. In Section 3 we
describe the geometry of the model used to simulate the thick-walled cylinder test, along with the necessary
boundary conditions and the material parameters. In Section 4 we present numerical results, demonstrating
computational robustness in terms of mesh insensitivity and calculated failure mechanisms. The prediction
of scale effect is also exhibited, by comparing results from cylinders of different hole size. Final conclusions
are drawn in Section 5.

2. Gradient elastoplasticity

In the following we present briefly the theory of gradient elastoplasticity and the basis of its numerical
implementation. More detailed derivations and description of the algorithms can be found in Zervos et al.
(2001).

2.1. Governing equations
We consider the total strain rate ¢; to consist of an elastic part ¢;; and a plastic part ef’,
& =€+ € (1)
The total (equilibrium) stress rate 6;; is defined in terms of the elastic strain rate and its Laplacian, as
Gy = C?jk[ (éil - lﬁvzéiz) (2)

where Cjy, is the tensor of elastic moduli and /. is a material parameter with dimensions of length, called the
elastic material length.
The yield condition is written

F=0 (3)

where F(t;;, ) is the yield function. The plastic strain rate is defined through a plastic potential QO(t;;, ¥)
using the flow rule
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where the scalar quantity v is the plastic multiplier. Setting O = F leads to the special case of associative
plasticity.
The yield function F and the plastic potential Q are assumed to depend on the reduced stresses 7;; and on
a hardening/softening parameter /. The reduced stress rate is given by
Ty = Gy — % (5)
and the evolution law for the back stress a;; is
22
Cte/k/lpv €& (6)
where the scalar parameter /, is called the plastic material length. Back stresses develop only where the
deformation becomes sufficiently inhomogeneous, allowing for a region around a material point to con-
tribute to its strength.
The plastic multiplier ¥, and consequently the plastic strains, can be determined from the consistency
condition, which ensures that the stress state remains on the yield surface during plastic deformation. This
condition is expressed as

F(Tl:h‘/j) = 07 F(tijalp) = aF i:l/ 25

Combining Egs. (1)«(7) and neglectmg terms of order higher than second, we arrive at the following
equation for the plastic multiplier

[1 ey 12)v2] b= 2 (e - 129%)

Y=0 (7)

H 61:,1,'
H = H, + H,
oOF . 00 (8)
Hy=—C, —
0 6‘51:,- ikl 6rk,
oF
Ho=——
t 61//

In contrast with classical plasticity, where the consistency condition is an algebraic equation that can be
solved analytically, Eq. (8) is a differential equation that would have to be discretised. Nevertheless, this
complication can be avoided by solving Eq. (8) analytically in an approximate fashion, as detailed in Zervos
et al. (2001). This yields

. 1 aF
lp = — Cljkl <€k1 + l V Ekl) (9)

with
H H
2 072 t 2
— 252 _ 7t 1
lC lp le >0 ( 0)

After some algebraic manipulation, total stress and back stress rates can be expressed in terms of total
strain rates as

df%%@—%ﬁﬁl (11)
— 2CP VP (12)
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where C? 1 18 the known plastic stiffness matrix of classical plasticity
P <1> e 6Q aF

Cijkl - Fcijmn a‘cmn afst sthl
and ( ) are the McAuley brackets defined by

1, if F=0 and y >0
1) = ’ . 14
) {0, if F<0 or F=0 and ¢ <0 (14)

Cy 1s the usual elastoplastic stiffness matrix

Cl/kl C?jk] Cz/k/ ( 1 5)
and, finally,
Clrjlkl = lgcl?/)cl + lc ijkl (16)

is a stiffness matrix for the second gradient terms.

It is worth noticing that, in the special case of /. = 0 but /, # 0, the above equations degenerate to the
gradient plasticity model presented by Vardoulakis and Aifantis (1991), Vardoulakis et al. (1992) and
Vardoulakis and Frantziskonis (1992). Thus, gradient plasticity is seen as a special case of the theory
presented here. Furthermore, for /. = /, = 0, the classical elastoplasticity theory is recovered.

2.2. Principle of virtual work

As shown by Vardoulakis and Sulem (1995) and Vardoulakis and Aifantis (1991), gradient plasticity can
be reinterpreted as a special case of a Mindlin continuum (Mindlin, 1964) in the plastic regime. The idea is
readily extended to gradient elastoplasticity, which can be seen as a Mindlin continuum both in the elastic
and the plastic regimes (Zervos et al., 2001).

Following the terminology of (Mindlin, 1964) and (Vardoulakis and Aifantis, 1991), we can rewrite Eq.
(11) for the total stress rate as

6, = 6y + 61 (17)
where

Ceklﬁkl (18)

é-z(‘/?) = - C;;lkzvzékl (19)

df? is the Cauchy stress rate, which is identified as the constitutive stress rate tensor of classical elasto-

plasticity and it relates to the strain rate. The second term, the relative stress rate a, ;> relates to the La-

placian of the strain rate and is equilibrated by a double stress rate my;, energy conjugate to the strain
gradient ¢;;. The double stress rate should be such that

(3',(12) + titggj = 0 (20)
leading to
mkij = C;Imnéinmk (21)

The equations of static equilibrium are obtained through the principle of virtual work. The work of
internal forces is written as
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SVVin[ = / (651)66” + mkijGij‘k>dV (22)
14

To calculate the work of external forces, we split the boundary S in two parts, S, and S,. Dirichlet
boundary conditions are applied at S,. We remark that, because strain gradients are included in the for-
mulation, the Dirichlet boundary conditions can now contain restrictions not only on the displacement, but
on its normal derivative at the boundary as well.

Neumann boundary conditions are applied at S,. In the absence of body forces, the external work can be
written as an integral over S, in the form of

S = / (435, + i ) ds (23)
S

where #; is the applied traction vector, ; is the applied double traction vector, #; is the unit normal to S, and
dv; is the virtual displacement rate vector on S,. The principle of virtual work can then be written as

/ (UEJ(DSGU + m;cUSél'j’k)dV = / (IISU, + ,Llinkél.),"k) ds (24)
Vv So

2.3. Finite Element Formulation

It was shown above that the rates of all constitutive quantities can be expressed in terms of the total
strain rate, its gradient and its Laplacian. Therefore, the usual displacement formulation of the finite el-
ement method is quite suitable for solving boundary value problems of gradient elastoplasticity. Only the
displacement field needs to be discretised, while strains and strain gradients can be computed through shape
function derivatives of various orders.

Nevertheless, the presence of strain gradients in the equations of variational equilibrium imposes the
extra constraint on strains to be continuous. Since strains are the first derivatives of the displacements, the
employed interpolation scheme needs to guarantee C' continuity (continuous displacement derivatives),
instead of C° (continuous displacements) that is sufficient for classical elastoplasticity. In addition, since the
strain Laplacian is needed, the shape functions must be polynomials of sufficiently high order, so that they
do not vanish when differentiated three times.

The extra continuity needed for the displacement field restricts the choice of elements. In all other as-
pects, however, the algorithmic procedure to be followed does not differ much from the one used for
classical elastoplasticity.

For simplicity, in the following we constrain the analysis to the two-dimensional case of plane strain. We
use the three-noded C! triangle with 18 degrees of freedom for each interpolated field, shown in Fig. 1. This
element is a constrained version of the six-noded C' triangle originally presented by Argyris et al. (1968).
The displacement field varies as a complete quintic inside the element, while its normal derivative along the
element edges is constrained to be cubic. Since the first and second derivatives at the corners suffice to define
uniquely a cubic polynomial along each edge, derivatives are continuous across elements. The strain La-
placians vary quadratically. The total degrees of freedom of the element are 2(3 - 6) = 36, and its shape
functions were derived in analytical form by Dasgupta and Sengupta (1990).

The displacement field u inside each element is interpolated as

u:{g}:N.a (25)

where N is the matrix of the shape functions
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Fig. 1. C! triangle with 3 nodes.

N — Nl...N6 0...0 N7...N12 0...0 N13...N18 0...0 (26)
- 0...0 Nl...N6 0...0 N7...N12 0...0 N13...N18
and u is the vector of the nodal degrees of freedom
U=[uy w1y Uly Uiy Uy Uiy U1 oo Uiy Uz ... Uayy Uz ... U3W}T (27)

where u is the displacement along the global x-axis, v along the global y-axis and subscripts 1 to 3 refer to
the node number. A comma followed by a combination of x and y in the subscript denotes differentiation
along each direction mentioned (for example us,, is the second order mixed derivative of the displacement
along the x-axis on node 3).

Strain rates, their gradients and Laplacians can be written in vector form as

é=L -N-a=B i (28)
d

&=—€é=L)-N-u=B,-
X

=

(29)

=>

e},:aie:Lzy-N-ﬁszy- (30)

0
Ve=V=L;-N-a=B;-a (31)

where L;, Ly, Lo, and L; are appropriate differential operators. The constitutive relations for the Cauchy
stress, double stress and back stress, as expressed in Egs. (18), (21) and (12) respectively, can then be written
in vector form as:

6" =C". ¢ (32)
i, = C™ ¢, (33)
m, = C" - ¢, (34)
a=-I-C V% (3%)

where C*, C™ and C” are the tensors Cyy;, C73, and C7y; in matrix form.
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Substituting the above expressions in the virtual work Eq. (24) we arrive at the following system of
equations for the nodal degrees of freedom:

T e T m T ~m ~ T aNT aNT -
/ (BICB, + BL.C"Ba, + BL,C™By, )dV it = / {N t+ <nx+ny)m] ds (36)
" / s, ox oy
where t is the boundary traction vector, m is the boundary double traction vector and n = [nx, ny] is the
outward unit normal to the boundary.

The integral on the left hand side expresses the stiffness matrix. The right hand side integral is the load
vector. In classical plasticity only the first term of both integrands is present. The discretised gradient
plasticity model is thus obtained by extending the finite element formulation of classical elastoplasticity to
include additional entries in the stiffness matrix and loading vector.

Eq. (36) is solved iteratively with the Newton—Raphson method. At the end of each iteration, the current
estimate of the solution vector u is used to calculate the Cauchy stresses and the double stresses, which are
in turn used to calculate the residual forces at the end of the iteration as

R= / (BlTo-(()) +Blm, + Bgymy)dV - /
v

So

- oNT oNT
T i D e
[N t+ <nx 3 +n, o )m} ds (37)

3. Model description
3.1. Geometry, loading and boundary conditions

In the following we present results of numerical simulations of thick-walled cylinder tests, which are the
standard tests used in the petroleum industry for modelling the mechanical behaviour of boreholes and
perforations. Because of the scale effect clearly observed in the experiment, proper interpretation of the
experimental data and correct extrapolation to field predictions are challenging issues. We repeat that
classical elastoplasticity is unable to predict the experimentally observed scale effect since it does not include
a material length for scaling the size of the holes.

The geometry of the problem and the loading and boundary conditions are shown in Fig. 2. Assuming
symmetry along the x- and y-axes, only one quarter of the specimen needs to be discretised. The ratio of the

§ A constrained displacement

1> constrained normal derivative

Rexl = 5 lQint

177777 177777 177777

RCX(

Fig. 2. Model geometry, loading and boundary conditions.
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external to the internal radius is 5:1. The cylinder is loaded with increasing uniform pressure on the external
boundary while the internal pressure is maintained to zero.

Special attention must be given to the kinematic boundary conditions needed to establish the two
symmetry boundaries along the x- and y-axes. As we mentioned earlier, the existence of gradient terms in
the equations of variational equilibrium allows, in addition to the displacement, for its normal to the
boundary derivative to be prescribed as well. Therefore, in order to establish symmetry boundary condi-
tions along the x- and y-axes not only displacements but higher order constraints are also needed to be
prescribed.

Examining intuitively the behaviour of the radial and tangential displacements u, and uy on both sides of
the symmetry boundaries, we remark the following: uy must be antisymmetric (for example, for the x-axis,
up(—0) = —up(0)), hence up(0) = uy(n/2) = 0. This is the first kinematic constraint to be applied. It is
equivalent to prescribing u, = 0 along the y-axis and u, = 0 along the x-axis. The antisymmetry condition
for ug means that, although we can determine its value at the symmetry boundary, its normal derivative
remains unknown and can even vary along the boundary. On the other hand, u, must be symmetric around
the symmetry boundaries (for example, for the x-axis, u,(—0) = u,(6)). Although the value of u, on the
boundary is unknown, the symmetry condition implies that its derivative with respect to 6 must be zero,
(0u,/00)(0) = (0u,/00)(n/2) = 0. This is the second kinematic constraint to be applied. It is equivalent to
prescribing Ou,/0x = 0 along the y-axis and Ou,/0y = 0 along the x-axis.

3.2. Material model
The material behaviour is described by the Mohr-Coulomb failure criterion
F=mt,—1—0.=0 (38)

where m = (1 +sin¢)/(1 — sin ¢) is the friction coeflicient and . = (2ccos ¢p)/(1 — sin ¢) is the equivalent
stress; ¢ is the angle of internal friction and c¢ is the material cohesion. The material parameters were
calibrated from triaxial tests on Castlegate sandstone. The elastic constants were found to be £ = 8100
MPa and v = 0.35. The friction angle is considered constant, with a value ¢ = 32.54° and an associated
flow-rule is assumed, O = F.

The hardening/softening behaviour is defined through the equivalent stress o (¢,), which depends on the
accumulated equivalent plastic strain €,. The equivalent plastic strain rate is defined as the rate of dissipated
work due to plastic deformation, divided by the equivalent stress. The hardening law is taken to evolve
according to the hyperbolic equation

(1 — Coep)ep

39
Cl + C26p ( )

oc(€p) = Oeo +

which is fitted on the experimental data. C; = 1.323 x 10~ and C, = 6.1271 x 1072 are calibration con-
stants and 0.9 = 25 MPa defines the state of initial yield.

The constant Cy is an open parameter which controls the rate of softening; in this study it is taken to be
Co = 70. The plastic material length is set to /, = 0.2 mm, equal to the mean grain diameter of the Cast-
legate sandstone. The elastic material length is taken to be 10 times smaller, /. = 0.02 mm. This choice is
made more or less arbitrarily in this study, and reflects the fact that the existence of microstructure is more
dominant in the plastic regime. We also note that, due to diffuse and localised bifurcations and end re-
straints, standard laboratory calibration tests cannot determine the “true’” material softening. In principle,
extra information on the shear band thickness and the scale effect could be inverted using the gradient
elastoplasticity model to obtain the softening rate and the material lengths.
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4. Numerical results and discussion
4.1. Mesh sensitivity study

In order to demonstrate mesh insensitivity of the results, computations were carried out for three dif-
ferent meshes (coarse, medium and fine) presented in Table 1. A picture of the mesh near the hole is shown
in Fig. 3(a), for the case of the medium mesh. The model presented in the following has internal radius
r; = 0.10 m and external r. = 0.50 m.

Upon loading, the stress concentration near the hole wall causes the material there to yield first. The
material follows the hardening branch and then enters the softening regime as plastic deformation con-

Table 1
Finite element meshes
Name Nodes Elements Degrees of freedom
Coarse 15 x 41 = 615 1120 7380
Medium 20 x 81 = 1620 3040 19440
Fine 25 x 121 = 3025 5760 36300
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Fig. 3. (a) Mesh, (b)—(d) progressive localisation shown by the incremental displacement field and material state for medium mesh
(ri = 0.10 m).
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tinues. Because of the imposed symmetries on geometry and loading, the deformation is initially axisym-
metric. This can be seen by the vector plot of Fig. 3(b), which shows convergence of the hole in terms of the
displacement increment. In the same plot we can see that a zone of softening material forms around the hole
wall (light grey points), surrounded by a zone of hardening material (black points). The rest of the material
in the deeper region is still virgin elastic, since stresses there are not beyond initial yield.

Upon further loading, however, the axisymmetry of the deformation breaks spontaneously. As it can be
seen in Fig. 3(c), the displacement increment takes a sinusoidal form. As a result, regions of the material
which were in the plastic regime now unload elastically (dark grey points). As the load increases the un-
loading ““spots™ grow in size and coalesce. Finally, almost all the region close to the hole wall is unloading
elastically, except the narrow zones of the forming shear-bands, which continue to plastically soften (Fig.
3(d)). The bands are connected to a familiar breakout form, which resembles the failure mechanisms ob-
served in the experiments.

It should be noted that, although axisymmetry breaks and unloading takes place, the external load keeps
increasing. In other words we observe a “tangential bifurcation”. The load eventually reaches a peak and
then drops, as the deformation localises. It is also worth noticing that loss of symmetry is totally spon-
taneous. Neither was the solution biased with a preselected eigenmode, nor were imperfect elements in-
troduced in the model. Imperfect elements are needed in the modelling of homogeneous problems such as
the biaxial test (Zervos et al., 2001). In the present problem the deformation is inhomogeneous due to the
stress concentration near the hole wall from the early beginning. It seems that the round-off error alone
suffices to push the solution to a localised pattern. The same observation was made by Papanastasiou and
Vardoulakis (1992), where progressive localisation in thick-walled cylinders was studied with a Cosserat
continuum. The imperfection sensitivity of these models means that close to a bifurcation point any “‘real”
imperfection will push the solution away from the primary solution towards the localisation branch.

From the external pressure vs. hole closure curve of Fig. 4, we see that all three meshes predict the same
response. The load where axisymmetry breaks is the same for all models, and the same is the pattern with

45 T T T T T T T
40t ]
Symmetry break
< 35F J
o
=
v; 30_ -
[}
o
o 25r 1
=}
@
o 20r 1
o
S 15t :
[0}
=
L 10- 4
—— coarse mesh
5r —— medium mesh ||
fine mesh

0 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Ratio of volumetric change

Fig. 4. External pressure vs. hole closure for three different meshes, r; = 0.10 m.
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(a) Pext = 39.87 MPa (b) pest = 43.20 MPa

Fig. 5. Progressive localisation shown by the incremental displacement field and material state for coarse mesh (; = 0.10 m).
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Fig. 6. Progressive localisation shown by the incremental displacement field and material state for fine mesh (r; = 0.10 m).

which it breaks (the number of waves of the sinusoidal around the hole, or warping mode). This can be seen
by comparing Fig. 3(c) with Fig. 5(a) for the coarse mesh, and Fig. 6(a) for the fine mesh. The final localised
patterns, shown in Figs. 3(d), 5(b), and 6(b), are the same as well.

4.2. Scale effect

In order to demonstrate the scale effect, computations were carried out for models with different internal
radii. Apart from the case of ; = 0.10 m, which was already presented, models with , = 0.02, 0.05, 0.15,
0.20 and 0.40 m were run. The ratio of the external radius to the internal was kept fixed to 5:1 for all
models. The results are briefly presented in Table 2, where psymm is the load at which symmetry breaks and
Preak 15 the peak load. The ratio of the hole radius over the plastic internal length, the type of mesh used and
the pattern with which symmetry breaks (warping mode) are also shown.
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Table 2
Results for models of various sizes
7i ri/ly Mesh Warping mode (quarter) Psymm Ppeak
0.02 100 Coarse - - 52.02
0.05 250 Coarse 2 47.57 48.98
500 Coarse 4.5 39.71 43.32
0.10
0.10 500 Medium 4.5 39.71 43.25
0.10 500 Fine 4.5 39.71 43.20
750 Medium 8 37.44 39.92
0.15
0.20 1000 Medium 10 37.21 38.68
0.40 2000 Medium 21.5 37.06 37.24
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Fig. 7. External pressure vs. hole closure for models with different size holes.

The external pressure vs. hole closure curve for each model is presented in Fig. 7. The various secondary
branches which correspond to different hole radii demonstrate that small holes are stronger than large ones.
From this figure and Table 2, it is clear that both pymm and ppeak increase as the hole radius decreases. For
the smallest hole presented, the one with », = 0.02 m, symmetry never breaks. Also, smaller holes give lower
warping modes, which is consistent with Papanastasiou and Vardoulakis (1992). It is worth noticing the
behaviour of the model with r; = 0.40 m in particular, where structural softening is very severe showing the

curve to drop almost vertically once a critical deformation in the localisation branch is reached.

Another observation we can make is that as the hole gets larger, the scale effect becomes less pro-
nounced. For example, the difference between »; = 0.05 m and »; = 0.10 m is much bigger than the one
between r; = 0.20 m and »; = 0.40 m. This is clearly shown in the scale diagram of Fig. 8, where py,x and
Dsymm are plotted vs. r;/l,, which is a measure of the hole size. The scale effect fades out rapidly with
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Fig. 8. Dependence of thick-walled cylinder failure load on dimensionless hole size (scale effect).

increasing hole size, a tendency also observed in the experiment (Haimson and Herrick, 1988; Papamichos
and van den Hoek, 1995).

5. Conclusions

The theory of gradient elastoplasticity, developed by Zervos et al. (2001) and presented briefly here with
its numerical implementation, was used to model the progressive failure and the scale effect observed in
thick-walled cylinders. The material is a weak sandstone modelled as a Mohr—Coulomb dilatant material
with hardening and softening behaviour. The inclusion of gradient terms regularises the material behaviour
in the softening regime. The mesh dependence inherent in classical plasticity is remedied.

The model predicts that symmetry of deformation breaks spontaneously according to a dominant
warping mode. This takes place in the branch of structural hardening before the peak load is reached. The
deformation localises progressively into thin shear bands while the surrounding material unloads elasti-
cally. The localised deformation leads to failure patterns similar to the breakout form observed in exper-
iments. Mesh-insensitivity was demonstrated by showing that the predicted bifurcation mode, the final
deformation pattern and the load—displacement curves are the same for different meshes. The model can
also predict the existence of the scale effect according to which small holes are much stronger than large
holes.

Acknowledgements
The authors would like to thank Schlumberger Cambridge Research for supporting this research. I.

Vardoulakis wants also to acknowledge GSRT of Greece for supporting his research through the program
PENED 99 ED 642.



A. Zervos et al. | International Journal of Solids and Structures 38 (2001) 5081-5095 5095

References

Aifantis, E., 1984a. On the microstructural origin of certain inelastic models. ASME J. Engng. Mater. Technol. 106, 326-330.

Aifantis, E., 1984b. Remarks on media with microstructures. Int. J. Engng. Sci. 22, 961-968.

Aifantis, E., 1987. The physics of plastic deformation. Int. J. Plasticity 3, 211-247.

Argyris, J.H., Fried, 1., Scharpf, D.W., 1968. The TUBA family of plate elements for the matrix displacement method. Aeronaut.
J. Roy. Aeronaut. Soc. 72, 701-709.

Dasgupta, S., Sengupta, D., 1990. A higher-order triangular plate bending element revisited. Int. J. Num. Meth. Engng. 30, 419-430.

Fleck, N.A., Hutchinson, J.W., 1993. A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41 (12),
1825-1857.

Haimson, B., Herrick, C., 1988. Borehole breakouts and in situ stress. In: Rowley, J. (Ed.), Drilling Symposium 1989. pp. 17-22.

Mihashi, M., Okamura, H., Bazant, Z., 1994. Size effect in concrete structures. E&FN Spon.

Mindlin, R., 1964. Microstructure in linear elasticity. Arch. Rat. Mech. Anal. 10, 51-78.

Miihlhaus, H.-B., Vardoulakis, 1., 1987. The thickness of shear bands in granular materials. Geotechnique 37, 271-283.

Pamin, J., 1994. Gradient-Dependent Plasticity in Numerical Simulation of Localization Phenomena, PhD Thesis. Delft University
Press.

Papamichos, E., van den Hoek P., 1995. Size dependency of Castlegate and Berea sandstone hollow-cylinder strength on the basis of
bifurcation theory. Proc. 35th US Symp. Rock Mechanics.

Papanastasiou, P., Durban, D., 1999. Bifurcation of elastoplastic pressure-sensitive hollow cylinders. J. Appl. Mech. 66, 117-123.

Papanastasiou, P., Vardoulakis, 1., 1989. Bifurcation analysis of deep boreholes: II. Scale effect. Int. J. Num. Anal. Meth. Geomech.
13, 183-198.

Papanastasiou, P., Vardoulakis, 1., 1992. Numerical treatment of progressive localization in relation to borehole stability. Int. J. Num.
Anal. Meth. Geomech. 16, 389-424.

Pijaudier-Cabot, G., Bazant, Z., 1987. Nonlocal damage theory. J. Engng. Mech. ASCE 113, 1512-1533.

Ramaswamy, S., Aravas, N., 1998a. Finite element implementation of gradient plasticity models. part I: Gradient-dependent yield
functions. Comput. Meth. Appl. Mech. Engng. 163, 11-32.

Ramaswamy, S., Aravas, N., 1998b. Finite element implementation of gradient plasticity models. part II: Gradient-dependent
evolution equations. Comput. Meth. Appl. Mech. Engng. 163, 33-53.

Shu, J.Y., Fleck, N.A., 1998. The prediction of a size effect in microindentation. Int. J. Solids Struct. 35 (13), 1363-1383.

Tvergaard, V., Needleman, A., 1995. Effects of nonlocal damage in porous plastic solids. Int. J. Solids Struct. 32, 1063-1077.

van Vliet, M., 2000. Size effect in tensile fracture of concrete and rock, PhD Thesis. Delft University Press.

Vardoulakis, I., Aifantis E.C, 1991. A gradient flow theory of plasticity for granular materials. Acta Mech. 87, 197-217.

Vardoulakis, I., Frantziskonis, G., 1992. Micro-structure in kinematic-hardening plasticity. Eur. J. Mech. A /Solids 11 (4), 467-486.

Vardoulakis, 1., Papamichos, E., Sulem, J., 1994. A second-gradient plasticity model for granular rocks. In: Bazant, M.J.Z.P., Bittnar,
Z., Jirasek, M., Mazars, J. (Eds.), Fracture and Damage in Quasibrittle Structures. E&FN Spon.

Vardoulakis, 1., Papanastasiou, P., 1988. Bifurcation analysis of deep boreholes: 1. surface instabilities. Int. J. Num. Anal. Meth.
Geomech. 12, 379-399.

Vardoulakis, 1., Shah, K.R., Papanastasiou, P., 1992. Modelling of tool-rock shear interfaces using gradient-dependent flow theory of
plasticity. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 29 (6), 573-582.

Vardoulakis, I., Sulem, J., 1995. Bifurcation Analysis in Geomechanics. Blackie Academic and Professional.

Zervos, A., Papanastasiou, P., Vardoulakis, I., 2001. A finite element displacement formulation for gradient elastoplasticity. Int.
J. Num. Meth. Engng., in press.



